Sepsis and Prevention: Vaccinations

Infection prevention is the only way to prevent sepsis. Although not all infections are preventable, we can significantly reduce the risk through infection prevention measures such as regular hand washing and isolating ourselves if we are ill. Another important way to reduce the risk of contracting infections is by receiving vaccinations that target certain illnesses. These vaccines either kill or prevent microbes (germs) from reproducing, as with the chickenpox vaccine, or they minimize the impact of the illness, as do the vaccines for COVID-19.

Sepsis, which was often called blood poisoning, is the body’s life-threatening response to infection. Like strokes or heart attacks, sepsis is a medical emergency that requires rapid diagnosis and treatment. 

This resource was developed with funding from GSK’s COiMMUNITY grant initiative and executed independently without GSK oversight.

Suggested Citation:
Sepsis Alliance. Sepsis and Prevention:Vaccination. 2025.

Updated June 13, 2925.

More About Vaccines

Definition and types of vaccines

Vaccines are medications that stimulate your immune system into producing antibodies against specific germs.

There are different types of vaccines, which trick your body into thinking it was infected with this germ before.

The vaccines most people are familiar with are made with weakened or dead organisms of a particular virus. These organisms can’t make you sick, but they imitate the viral infection, causing your body to think it’s developed the illness. Your immune system responds to the vaccine by producing t-lymphocytes (also called t-cells) and antibodies. The t-cells circulate in your blood system looking for abnormalities or infections. The t-cells then “recruit” the antibody-producing lymphocytes and plasma cells.

Once your immune system detects the organism, it makes antibodies to destroy the “invaders.” This leaves your body with a memory of how to fight off that particular illness should you encounter it again. These vaccines are available by injection, by mouth, or by nasal spray, depending on the vaccine.

Inactivated vaccines

Inactivated vaccines are those made with dead germs. The most commonly given vaccines using an inactivated microbe are for preventing:

  • Hepatitis A
  • Influenza (injection only, not the nasal formulation)
  • Polio (injection only, not the oral formulation)

Live-attenuated vaccines

More vaccines are made with weakened forms of the microbes. Attenuated means weakened. The most commonly used live attenuated vaccines include:

  • MMR (for measles, mumps, and rubella)
  • Rotavirus
  • Smallpox
  • Chickenpox
  • Yellow fever

mRNA vaccines

mRNA vaccines, also called messenger RNA vaccines, entered the public vocabulary as the COVID-19 pandemic raged on. mRNA technology is not new though. Researchers had been working for decades to find vaccines and treatments using mRNA technology, but up to now hadn’t found a good, effective use for it.

Unlike traditional vaccines, mRNA vaccines don’t have any virus form in them. Instead, the vaccine uses genetically engineered mRNA to instruct the body how to produce copies of a protein found on the outside of the virus. Once it’s done its job, the mRNA breaks down. It doesn’t enter the DNA, nor does it alter DNA in the body. It also doesn’t prevent someone from contracting the infection. Instead, the vaccines reduce the risk of severe illness and death.

Conjugate vaccines

Other vaccines, called subunit, polysaccharide, recombinant, and conjugate vaccines are made with parts of microbes, depending on the infection. The most common ones include vaccines against:

  • Shingles (herpes zoster)
  • Whooping cough
  • Hepatitis B
  • Hib (Haemophilus influenza type b) disease
  • Pneumococcal disease
  • Meningococcal disease

Toxoid vaccines

Toxoid vaccines are what the name implies: they contain a toxin or chemical made by bacteria or a virus. The vaccines provide immunity to the harmful effects of the infection, instead of to the infection itself. Vaccines for tetanus and diphtheria are toxoid vaccines.

Viral vector vaccines

The Johnson & Johnson COVID-19 vaccine, which is no longer available in the U.S., used viral vector technology. This technology has been around for a few decades, like mRNA. It involves using a modified version of a separate but similar virus to send messages to the body about how to fight the infection. With the COVID-19 vaccine, the virus vector was an adenovirus, one of the viruses that cause the common cold.

How they work

Vaccines take time to work

It can take anywhere from several days to a few weeks for a vaccination to become effective. For example, if you receive chickenpox vaccine and you spend time with someone who has the disease within a few days of the injection, you may still become ill. When this happens, some people believe that the vaccination made them sick, but this isn’t so. They were exposed to the virus before their immune system had a chance to react to the vaccine.

Why vaccinations instead of natural immunity?

When you contract a virus, such as a meningitis or measles virus, your body tries to fight it. If it’s successful and the illness goes away, you usually develop an immunity to the disease and you shouldn’t get it again. Or if you do get the illness, it may be milder than it would have been ordinarily. This is a natural immunity. However, these illnesses are serious and can cause long-lasting damage to your body, and even sepsis and death. Vaccinations significantly reduce the damage many common viruses and some bacteria can cause. For example, in the early 1900s, an average of 503,282 people died of measles each year in the U.S. Because of vaccinations against the illness, in 1990, only 89 people in the U.S. died from measles.

Keeping vaccines up to date

You may recall you or your child getting some vaccines in a series. These vaccines need more than one dose for your immune system to recognize and build up antibodies against some viruses. Other vaccines need a booster shot years later because immunity wears off. Therefore, it’s important to follow vaccine and booster schedules, even for adults. The newest shingles vaccine requires two injections within two to six months of each other.

Recommended vaccinations

Recommended vaccines

The Centers for Disease Control (CDC) maintains a recommended vaccine schedule for you and your family. You can also review the World Health Organization (WHO) and the European Center for Disease Prevention (ECDP) recommendations as well. Following the recommended schedules gives your children the best chances at reducing their risk of developing these largely preventable illnesses and associated complications that could occur.

Adults who haven’t received the recommended vaccines as children can still receive vaccinations against the diseases. Other recommended vaccines include those that prevent pneumonia, shingles, influenza, and COVID-19.

Extra vaccinations

If you travel to other countries or work in a field that could expose you to certain illnesses, you may be required to receive additional vaccines. Before your travels, check with the CDC and your doctor to see which vaccines are recommended and which are mandatory. It takes several weeks for some vaccines to be fully effective, so leave yourself enough time before your departure date. Some countries will deny entry to people who have not received mandatory vaccinations, particularly if you are going to specific locations, such as the jungle or farmlands.

Exceptions to vaccinations

Not everyone can receive vaccines. People with a weakened immune system might have to delay or not receive vaccinations at all. Some are allergic to an ingredient in a particular vaccine. The people around them can provide herd immunity through their own vaccinations.  If the people who are regularly in contact with the unvaccinated person are vaccinated, the unvaccinated person has a lower chance of being exposed to the virus or bacteria and becoming ill.

If you suspect sepsis, call 9-1-1 or go to a hospital and tell your medical professional, “I AM CONCERNED ABOUT SEPSIS.” 

Related Conditions

Margaret Foster

My mother died of sepsis on Tuesday, February 13, 2024, at the age of 73. She had a history of diverticulitis, but was told after her routine colonoscopy in 2023 that although she had diverticulitis throughout her colon, that she could either schedule a colonoscopy in 10 years, or she could choose to never have one again. On the morning, of February 13, my mother called me and said she was in terrible pain and needed to go to the hospital. I rushed to her home, saw that she had a high fever, called 911, and she was at the ... Read Full Story

Submit Your StoryView More Stories

Ann Catherine L.

I had some female surgery. A few days later, I was a little achy and sleepy. I lost my appetite. I got out of bed on Monday morning and couldn’t stand up. I called my daughter and said, “I think I need to go to the hospital”. When we arrived I was taken right into a bed. My BP was 51 over 40. I was frozen. I couldn’t form a sentence. I was pumped full of different antibiotics until all the blood tests came back, then they used drugs that worked. I remember very little of my week in hospital. ... Read Full Story

Submit Your StoryView More Stories

John Marchiando

In 2023 I returned from a company event in Las Vegas not feeling well. The next day, I felt tired, so thought I’d take a nap (which I NEVER do), so I laid down. I was having trouble breathing, so thought “that’s not a good thing” and decided to drive to urgent care. They told me that “I was too sick to be there and that I needed to go to the hospital”. They put me in an ambulance and sent me there, where I was told that I have bilateral pneumonia. (Sepsis and Pneumonia) I was eventually put on ... Read Full Story

Submit Your StoryView More Stories

Lindsey Rowe

I’m 35 and have been an ICU nurse for 13 years. I have taken care of many patients in septic shock. Yet when I was sent home from two ERs with a “just a virus” diagnosis, I didn’t think much of it. I was the sickest I had ever been, but if they thought I was okay? I must be. I woke up from a nap literally blue. Everything hurt, including wearing clothes. My husband luckily didn’t listen to me and immediately called 911. The paramedics who came couldn’t get my blood pressure to read. They had an even harder ... Read Full Story

Submit Your StoryView More Stories

Elexa Ferguson

My sepsis story is long, but I’ll try and keep it short. The week of Thanksgiving 2024 I felt fine, slight sore throat but nothing extreme. Day before Thanksgiving I had some lethargy but managed to help make dinner with my mother in law. Then on Thanksgiving day, in the morning my body aches set in. Extreme all over body aches, nothing could stop them. I was in tears I was in so much pain. I tried to eat thanksgiving dinner with my family, but it was cut short by my body aches and pain. I spend evening, while everyone ... Read Full Story

Submit Your StoryView More Stories

Related Resources

Information Guide

Prevention: Vaccinations

  • To submit this form you are required to enter your first name, last name, a valid email address and your role.

Prevention: Vaccinations